# Enrollment No: \_\_\_\_\_ Exam Seat No: \_\_\_\_\_ C. U. SHAH UNIVERSITY Winter Examination-2019

# Subject Name : Design and Analysis of Algorithms

| Subject Code : 4TE05DAA1 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Branch: B.Tech (CE)                                                             |                              |                |
|--------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|----------------|
| Semester : 5             |                                                    | Date : 21/11/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time : 10:30 To 01:30 Mar                                                       |                              | <b>xs : 70</b> |
| (1)<br>(2)<br>(3)<br>(4) | tions:<br>Use<br>Instr<br>Drav<br>Assu             | of Programmable calculator & any<br>uctions written on main answer boo<br>v neat diagrams and figures (if nece<br>ume suitable data if needed.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | other electronic instru<br>ok are strictly to be ob<br>essary) at right places. | iment is prohibited<br>eyed. | 1.             |
| Q-1                      | a)<br>b)<br>c)<br>d)<br>e)                         | Attempt the following questions<br>Arrange following rate of growth<br>$2^{N}$ , n log n, n <sup>2</sup> , 1, n, log n, n!, n <sup>3</sup><br>What is memorization?<br>What is space complexity of an all<br>Define $\Theta$ notation.<br>What is time complexity of fun()?<br>int fun(int n)<br>{<br>int count = 0;<br>for (int i = n; i > 0; i /= 2)<br>for (int j = 0; j < i; j++)<br>count += 1;<br>return count;                                                                                                                                                                               | in increasing order.                                                            |                              | (14)           |
|                          | f)<br>g)<br>h)<br>i)<br>j)<br>k)<br>l)<br>m)<br>n) | (i).O(n^2) (ii).O(nLogn) (iii).O(n) (iv).O(nLognLogn)<br>What is principal of optimality?<br>What is amortized analysis?<br>Is $2^{n+1} = O(2^n)$ ? Explain.<br>Give big theta ( $\Theta$ ) notation for f (n) = 14 * 7 + 83.<br>List out characteristics of Greedy algorithm.<br>Give best case and worst case time complexity of linear search algorithm.<br>What is backtracking?<br>Give big omega ( $\Omega$ ) notation for f (n) = $83n^3 + 84n$ .<br>Let $f(n)$ and $g(n)$ be asymptotically positive functions. Prove or disprove<br>following.<br>$f(n) + g(n) = \Theta(\min(f(n), g(n)))$ |                                                                                 |                              |                |



#### Attempt any four questions from Q-2 to Q-8

Attempt all questions

Q-2

#### Using recurrence tree method solve the following recurrences: **(a)** (i) T(n) = T(n/3) + T(2n/3) + O(n)(ii) $T(n) = 3T(n/4) + cn^2$ What is an algorithm? Explain various properties of an algorithm. **(b)** Write an algorithm for quick sort and also give its best case, worst case (c) and average case time complexity. Q-3 Attempt all questions Explain master theorem and solve the following recurrence equation with **(a)** master method 1. T(n) = 9T(n/3) + n2. T(n) = 3T(n/4) + nlgn. Explain Binary search algorithm with divide and conquer strategy and use **(b)** the recurrence tree to show that the solution to the binary search recurrence

### Q-4 Attempt all questions

- (a) Write equations for finding shortest path using Floyd-Warshall algorithm. Find out shortest path for below mentioned all pairs of graph.
  - $\begin{array}{c} A B C D \\ A 0 \infty 3 \infty \end{array}$

 $T(n) = T(n/2) + \Theta(1)$  is  $T(n) = \Theta(lgn)$ .

- $\begin{array}{c} \mathbf{R} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \\ \mathbf{B} \quad \mathbf{2} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \end{array}$
- $D \left[ 6 \infty \infty 0 \right]$
- (b) Explain merge sort with suitable example. Also give its recurrence equation and its best case, worst case and average case time complexity.

### Q-5 Attempt all questions

- (a) Write down Kruskal's algorithm for finding minimum spanning tree. Give one example. Also give its worst case and best case running time complexity.
- (b) Solve following knapsack problem using dynamic programming algorithm with capacity of knapsack W=5, Weight and Value are given as: (2, 12), (1, 10), (3, 20), (2, 15).

### Q-6 Attempt all questions

- (a) Explain spurious hits in Rabin-Karp string matching algorithm with example. With working modulo q=13, how many spurious hits does the Rabin-Karp matcher encounter in the text T = 2359023141526739921 when looking for the pattern P = 31415?
- (b) Using greedy algorithm find an optimal solution for knapsack instance where n=7, M = 15, (P1, P2, P3, P4, P5, P6, P7)=(10, 5, 15, 7, 6, 18, 3) and (w1, w2, w3, w4, w5, w6, w7) = (2, 3, 5, 7, 1, 4, 1)

A HUMPAN

(14)

(14)

(14)

(04)

(04)

(06)

(14)

# Q-7 Attempt all questions

- (a) Explain N-Queen problem with an example of 8-queens problem. Give at least four possible solutions of 8-queens problem.
- (b) Explain how to find out Longest Common Subsequence of two strings using Dynamic Programming method. Find any one Longest Common Subsequence of given two strings using Dynamic Programming. S1=abbacdcba S2=bcdbbcaac

# Q-8 Attempt all questions

(14)

- (a) Explain the class P and NP, polynomial time reduction, NP-hard problem and NP-complete problem with an example of each.
- (b) Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is <4, 10, 3, 12, 20, 7>.

